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M A T H E M A T I C A L  M O D E L I N G  O F  F L O W  A L O N G  A 

C Y L I N D E R  I N  A H O M O G E N E O U S  G R A N U L A R  B E D  

V. V. Baluev and E. E. Denisov  UDC 532.546 

A network model of flow along a cylinder placed in a stationary porous medium with uniform permeability 

is proposed. The results of numerical modeling for different regimes of liquid flow are given. 

The problem of flow along impermeable surfaces in contact with an infiltrated granular bed arises in the 

study of heat and mass transfer processes in a catalyst bed in chemical apparatuses [ 1 ], in heat-releasing elements 
of nuclear reactors [2 ], etc. The pore space inside these beds forms a system of communicating curvilinear channels 

of variable cross section, the character of flow in which is governed by local geometric characteristics of the fill, 

the properties of the flowing medium, and the regime parameters. A mathematical description of the processes in 

a granular bed in solving applied problems is constructed with the use of a porous body model developed within 

the framework of the filtration theory. 

The study of hydraulic characteristics in packings of different structures has been the objective of numerous 

experimental and theoretical works [1-8 and others ]. However, methodological difficulties arising in carrying out 

physical experiments do not yet permit the formulation in ultimate form of mathematical models that would fairly 

completely describe real processes. In this connection, the problem of establishing numerical methods that permit 

the study of hydrodynamic and thermal processes in granular beds on the basis of numerical experiment remains 
topical. 

Statement of the Problem. We consider a two-dimensional model of isothermal motion of a liquid in the 

vicinity of an impermeable cylinder placed in a porous medium. We represent the system of equations that describes 
this motion as: 

- g r a d p = a U + b l U  I U;  (1) 

div (RU) = 0 ; (2) 

xu + yv = 0 for x 2 + y2 = R 2 ., (3) 

�9 - - ,  2 2 U = (u,  v) --, (U| 0) as x + y --, oo. (4) 

Here p is the pressure; U is the liquid velocity; R is the radius of the cylinder in the flow. The coefficients 

a and b, in accordance with the flow regime, were computed on the basis of experimental data obtained in [2, 4 ]. 

We are able to obtain, in general form, an analytical solution to the problem of nonlinear filtration for a 

certain class of nonlinear equations and some particular statements of the problem [6, 7, and others ]. Thus, for 

example, in [7 ] a special nonlinear law of filtration is introduced for which the basic system of equations obtained 

by transformation of the hodograph has a general solution that enables us to efficiently apply the apparatus of the 

theory of complex variable functions. Solutions are given for particular problems of steady-state filtration of an 
incompressible liquid in a band with impermeable boundaries. 
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Fig. 1. Network model of flow along a cylinder in a granular bed. x, y, m. 

We note that constructing an approximate analytical solution to the problem (1)-(4) as Re --, ~ (Re = 

Udp/~t) leads to great mathematical difficulties. Therefore, the stated problem is solved numerically on the basis 

of a network method [9, 10 ] which is an analog of calculation methods for electric and hydraulic circuits. Owing 

to the use of graph theory, high computational efficiency of these methods is attained. 

Numerical Method. To calculate the flow distribution in a network (circuit), contour and nodal methods 

are used. As applied to a continuous medium, the nodal method is an analog of the finite-difference and finite- 

element methods. The system of equations in the nodal method is written for pressures in network nodes. In the 

contour method, pressure is excluded and the system of equations is written for flow rates on portions of the 

network. The flow rates G are subdivided into two families: Gch on the chords and Gtr on the graph tree. The flow 

rates G~r are expressed using matrix relations of network theory on the basis of a continuity equation in terms of 

the flow rates Gch. As a result, a final system of nonlinear algebraic equations is obtained for only the flow rates 

Gch. In solving nonlinear problems, the contour method is more efficient as compared with the nodal one, since it 

provides a better convergence of the solution [11 ]. In this connection, the contour method was used in these 

calculations. 
A discrete grid applied in the finite-difference or finite-element methods can serve as a network. By "grid" 

we mean here a set of sections (branches of the graph) that link the calculated nodes. The sections of the grid are 

simulated by sections of a circuit with lumped resistances, which are determined by the effective cross-sections of 
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Fig. 2. Design scheme of flow along a curvilinear surface. 

the sections Se. We calculate flow rates of the liquid on the sections of the network and the pressure at the nodes. 

To change from a conventional grid to a network, it is supplemented by a sections with a pump (in Fig. 1, section 

146-10). The constructed hydraulic circuit is an oriented graph. The directions of the sections of the graph are 

prescribed in an arbitrary way. In Fig. 1, the calculated region is "covered" with an Eulerian graph, which permits 

us to prescribe the graph tree and to automatically construct a system of independent contours [9 ]. On the sections 

between nodes 1-10 and 146-155, zero hydraulic resistance is prescribed, which makes it possible to simulate the 

inlet and outlet collectors. The velocity distribution at the inlet to the calculated region will be governed by the 

flow of the liquid from infinity with the velocity Uo,. The average velocity at the inlet to the calculated region is 

calculated from the prescribed Re number. In terms of this velocity we determine the flow rate that is prescribed 

on section 146-10. 

We rewrite Eq. (1) for an arbitrary section of the network with the direction 1 as: 

where 

- grad Pl = At I Ul[ UI, 

A l = - ~  + b IUtl " 

( s )  

We write Eq. (5) in terms of the flow rate Gl in the section in question (Gl = pSeUl): 

APl = g l  [Gll GI, (6) 

where R l = All/(PSe) 2 is the resistance of the section and l is its length. 

We write the continuity equation (2) for an arbitrary node in terms of the flow rates converging in it: 

~, G i = 0.  (7) 
i 

Expressing the flow rates Gtr from system of Eqs. (7) in terms of the flow rates Gch and substituting them into the 

system of equations for the independent contours, we obtain a nonlinear system of algebraic equations for the flow 
rates Gch, which we solve by Newton's method. We determine the increments in Gch in the n-th iteration from 
linearized system of equations [10 ]: 

(8) W (G (n)) AG (n+l) = - F (G (n)) , 
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TABLE 1. Ratio Unon/Ulirl in the Midship Section (x = O) 

Re y, m 
0.10 0.12 0.14 0.17 0.25 0.40 

50 

200 

1000 

500 

0.95 

0.92 

0.91 

0.91 

0.98 

0.96 

0.96 

0.96 

1.01 

1.00 

0.99 

1.00 

1.04 

1.05 

1.04 

1.04 

1.08 

1.09 

1.09 

1.09 

1.12 

1.13 

1.14 

1.13 

where W = 2BRIGI B T is a Jacobi matrix; F = BR'IGI G is the vector of the discrepancies of the heads. Here B is 

the matrix of the contours; I GI is the diagonal matrix of the absolute values of the flow rates in the sections; R' 

is the diagonal matrix of resistances of the sections. 
The pressure field is found upon completion of the iteration process for the velocities in terms of the 

computed pressure differences in the sections of the network and the prescribed pressure at the basis node (usually, 

this is a node at the inlet to the network). In [9 ], satisfactory agreement of the results of numerical solutions to a 

nonlinear filtration problem with experiment is reported. 

The effective cross-sections of the sections are analogs of the cross-sections of conductors with current. For 

right triangles, the effective cross-section of the hypotenuse is equal to zero [I0 ], i.e., these sections are of infinitely 

large resistance and hence the flow rate in them is equal to zero. When a flat plate is in a flow this condition is 

equivalent to the adhesion condition. We refer to the case of flow along a curvilinear surface (Fig. 2). Let the flow 

rate G1 =pSlu =pSu cos ~, arrive in sections S of this surface, whereas the flow rate G2 =pS2v =pSvsin ~o is that 

reflected from this surface. Since the flow rate in sections S is equal to zero, flow rates GI and G2 are identical and 

this condition is equivalent to condition (3) (the normal-to-the surface velocity Un = 0). If the liquid is ideal at 

points on a stationary surface in a flow, the velocity U(u, v) is tangent to the surface (Un = 0). At small filtration 

rates (the Darcy regime), the flow is potential and this condition can be considered as justified, although it is clear 

that the resistance force, even in this case, is not equal to zero but is small enough as compared with the resistance 

of the granular bed. At reasonably large Re, as the calculations show, the no-flow condition (3) results in flow 

differing insignificantly from a potential one in this case too. At the same time, it is clear that the adhesion condition 

in filtration flow is also unacceptable [3 ]. In real flow, part of the flow reflects from the surface, part of the flow 

slips at a tangent, i.e., condition (3) is not satisfied. Therefore, for a more adequate correspondence between model 

and natural flows on the sections on the surface of a body in flow, Eq. (1) should be also dealt with (as a boundary 

condition) [10 ]. The resistances of these sections depend on the wall porosity and the wall layer thickness. 

Results of a Computational Experiment. Numorical investigations of flow along a cylinder in a granular 

bed are performed with the use of a design graph scheme (see Fig. 1). A homogeneous ball fill (the ball diameter 

d = 0.01 m, the porosity in the layer e = 0.4) served as a granular bed. The cylinder radius is R -- 0.1 m; the 

dimensions of the calculated region are 0.4 x 0.8 m. The calculated region was divided nonuniformly by linear 

triangles (smaller calculated cells were used in the vicinity of the cylinder in the flow). As an infiltrated liquid, air 

at atmospheric pressure and t = 20~ was taken. 
The calculations are performed over a wide range of Re numbers: 2 (Darcy flow) ; 50 (the transient regime 

- Forchheimer flow [4 ]); 200; 1000; 5000 (turbulent flow). For each Re number, we calculated flow with the use 

of empirical dependences of [2 ] and [4] and wrote the analytical solution of the linear problem at the center of 

each calculated section: 

u = Uoo [1 - R 2 ( x  2 - y2)/(x2 + y 2 ) 2  l ; (9) 

v = - 2 R  2 U| xy/(x  2 + y 2 ) 2 .  (10) 
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P = PO - U| [1 + R2/ (x  2 + y2) ] x l z /K ,  (II) 

where K is the permeability of the ball fill; P0 is the pressure in the basis node (node 10 in Fig. I). 

The results of the calculations performed show that in the considered range of Re numbers, the velocities 

Unon obtained on the basis of the solution to problem (1)-(4) are similar to Ulin values (9) and (10) (see Table 1). 
These results are obtained for the case of the same resistance in the vicinity of the boundary of the cylinder and 
in the granular layer (e = const). Analogous results are obtained in [8 ] for an isotropic and reasonably large 

coefficient of resistance in the porous body. 
An increase in resistance at the boundary of the cylinder leads to an even greater convergence of the 

solutions to the linear and nonlinear problems (u, v). In the vicinity of surfaces in flow, porosity is higher as a rule 

than in the fill itself, which leads, on the whole, to a decrease in hydraulic resistance in this region. The influence 
of the porosity in the wall layer on the hydrodynamics in the fill is dealt with in the case of turbulent flow (Re -- 

1000). According to [1, 12 ], the porosity in the vicinity of the wall is taken equal to 0.8; the wall layer thickness 

is 0.2d. In this case in the wall layer Unon/Ulin - 5 ,  the total pressure drop in the granular layer decreasing by 
5%. The perturbation of velocity due to increased porosity near the wall decays exponentially away from the 

cylinder. This result demonstrates that, in addition to abnormal heat conduction, the wall zone has a no less 

substantial abnormal hydrodynamics too. It is pertinent to note that as far as the influence on heat transfer is 

concerned these effects can partially compensate one another, though this calls for a separate additional 

investigation. 
The velocity fields calculated with the use of data of [2 ] and [4 ] are in good agreement. At the same time 

the data of [2 ] yield a somewhat undervalued pressure drop in the granular layer with respect to [4 ]. 

The results obtained permit consideration of the possibility of finding the initial nonlinear problem (1)-(4) 

by solving two nonlinear problems. Let uo and v0 be the solution of the Darcy linear problem (9) and (10) and P0 

be the pressure calculated from the nonlinear filtration problem (1) in terms of uo and v0. We will seek the solution 

of problem (1)-(4) as: 

u = u 0 + u I ; (12) 

v = v o + v 1 ; (13) 

P = Po + Pl �9 (14) 

We substitute (12)-(14) into (1)-(2). Assuming that corrections vl, vl, and Pl are rather small and 

confining ourselves to terms of the 1st order of smallness in the expansion of the right side of Eq. (1), we obtain 

the following linear system for the corrections: 

Ottl OVl (15) 
ox = o ;  

Opl (16) 
= ta + c (2u;  + vo) 1 "1 + c ovov  ; Ox 

OPl (17) 
= cuovoul + Ia + c + 2v79 1 v l ,  ay 

where 

c = b/(u~ + v~) 1/2 

Boundary condition (3) for the system of Eqs. (15)-(17) remains as before, and in place of boundary 
condition (4), a root-mean-square (active) [11 ] pump head equal to the discrepancy of the heads calculated by Eq. 
(1) in terms of the linear velocities (9) and (10) is prescribed on each contour. 
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The obtained linear system of Eqs. (15)-(17) can be used for numerical solution of the nonlinear problem 

by an iteration process, the velocities, as an initial approximation, being taken from the solution of the Darcy 

problem and the pressure from the nonlinear filtration Eq. (1) for the calculated velocities. The subsequent 
approximations are taken according to relations (12)-(I 4). The iteration process is repeated until the discrepancies 

of the heads become smaller than the value prescribed. 

C O N C L U S I O N S  

1. Based on a network method, a numerical algorithm is developed for modeling flow along a cylinder in 

a granular bed. 
2. A flow field for filtration (nonlinear) flow along a cylinder in a porous medium is constructed using a 

contour mesh-analysis method. In the case of homogeneous isotropic porosity, numerical results show that the 

deviation of the velocity field from the linear case (the Darcy law) does not exceed 10-12% for Re as large as 
5000. At the same time if there is a thin layer of increased porosity near the body in the flow, the calculations 
show a substantial difference of the nonlinear hydrodynamics from linear one. For Re -- 1000, the nonlinear velocity 

in the wall zone has a five-fold excess over the linear velocity. 
3. A system of linear equations for calculating nonlinear corrections on the basis of linearization of the 

initial nonlinear filtration equation is obtained. 

N O T A T I O N  

x, y, rectangular coordinates; R, radius of cylinder; d, diameter of ball; p, density;/z, dynamic viscosity; 

K, permeability; p, pressure; u, v, components of velocity vector U; G, flow rate of liquid. 
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